スポンサーリンク

2022 国家総合職 経済区分 No.1

 ある消費者は,所得I の下,効用が最大となるようにX財とY財の消費量を決める。この消費者の効用関数は,以下のように与えられる。
\(u=x^{a}y^{b}\)   \( x\):X財の消費量,\(y\):Y財の消費量
             \(a\),\(b\) は正の定数
この消費者の所得I が200 のとき,X財,Y財の消費量はそれぞれ40,12 である。いま,X財,Y財の価格が一定の下,所得が200 から60 だけ減少する場合を考える。
このとき,X財に関する記述として妥当なのはどれか。

1.X財は上級財であり,その消費量は12 となる。
2.X財は上級財であり,その消費量は28 となる。
3.X財は下級財であり,その消費量は42 となる。
4.X財は下級財であり,その消費量は54 となる。
5.X財はギッフェン財であり,その消費量は45 となる。

正答 2

 効用関数がコブ=ダグラス型なので、公式を使って考える。
この消費者は所得Iのうち\(\frac{a}{a+b}\)をX財の消費にあてる。したがって、X財価格を\(p\)とすると、X財の需要関数は\(x=\frac{aI}{(a+b)p}\)と示される。
所得が200のとき、X財の消費量が40であることから
\(40=\frac{200a}{(a+b)p}\)
よって\(\frac{a}{(a+b)p}=\frac{1}{5}\)

これを需要関数に代入すると
\(x=\frac{I}{5}\)
所得Iが140まで低下すると
\(x=28\)となる。

また、所得が低下して消費量が減少したのでX財は上級財である。

スポンサーリンク
島本昌和をフォローする
スポンサーリンク
公務員試験過去問研究
タイトルとURLをコピーしました